Cosmic Rays and the Search for a Violation of Lorentz Invariance

l. Cosmic rays

Phenomenology, GZK cutoff

II. Violation of Lorentz Invariance

Theory, maximal attainable velocities Applications to decays, Čerenkov radiation GZK cutoff and neutrino oscillation

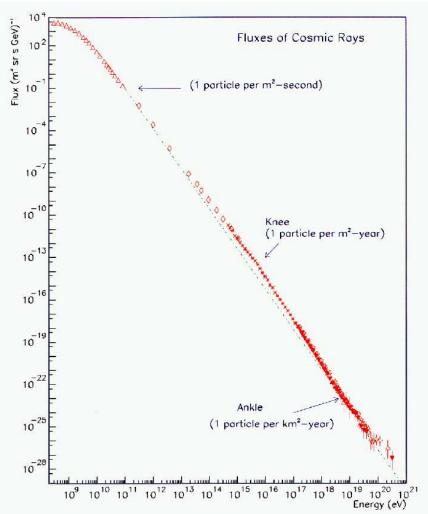
III. Cosmic γ -rays

Radiation of blazars and γ -Ray-Bursts (Photons in a non-commutative space)

IV. **Summary and Appendix** News from Pierre Auger Obs.

I. Cosmic Rays

High energy particles and nuclei of cosmic origin


```
1912 Discovery by V.F. Hess with an electroscope on a balloon : ionising radiation decreases up to 2000 m (radioactivity from earth) but rises again above [Hess: \rightarrow 5350 m; W. Kolhörster (1913/4) \rightarrow 6300 m] \Rightarrow Cosmic origin (beyond sun)
```

1938 P. Auger: separated Geiger counters detect correlated events. Extended Air Shower

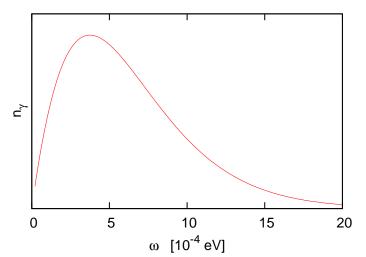
Cascade triggered by a high energy primary particle. Estimate: $E \ge 10^{15} \text{ eV}$

```
Knowledge today: \mathbf{E} \approx \mathbf{10}^9 \dots \mathbf{10}^{20} \ eV at high energy: \approx 90 % protons, 9 % \alpha, plus a few heavier nuclei; or Fe ions (?)
```

Isotropic; for charged rays source cannot be located (traditional picture) [deflection by interstellar magnetic fields $\sim O(\mu \text{G})$]

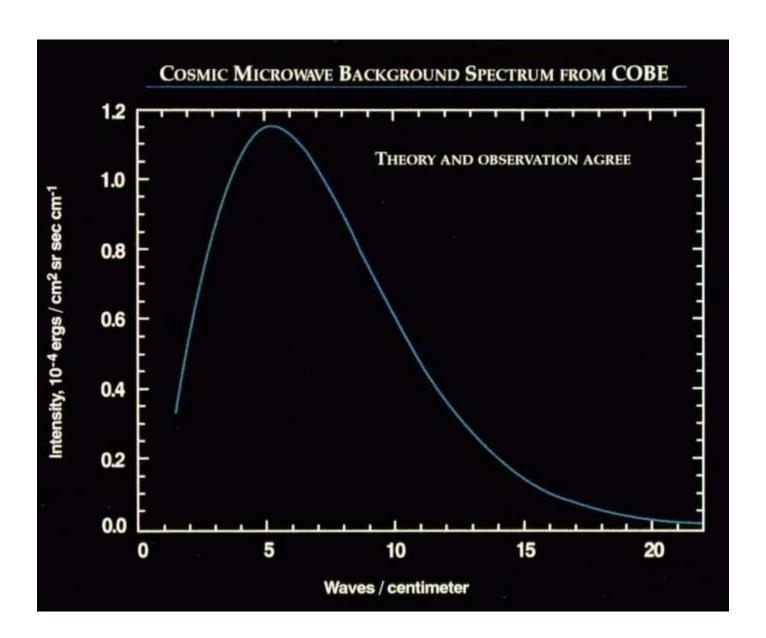
Flux of cosmic rays vs. energy, over broad interval essentially $\propto E^{-3}$

```
Origin ??? Historic proposal: Fermi mechanisms Collisions in a magnetic cloud. Later version : shock waves in gas of a supernova. Explanation at best up to \sim 10^{14}~{\rm eV}. Predicts energy density \propto E^{-2} [ Observations close to E^{-3} ]
```


Two classes of scenarios:

- "Top-down": Decay of extremely heavy particles generated in Big Bang \rightarrow energy available (magnetic monopoles, "wimpzillas" . . . ?? \rightarrow high-E γ , ν flux, not observed)

1965 A. Penzias/R. Wilson discover Cosmic Microwave Background


Relic of the Big Bang, photons decoupled after $pprox 3.8 \cdot 10^5$ years

Very precise Planck distribution : $dn_\gamma/d\omega \propto \frac{\omega^2}{e^{\omega/kT}-1}$, $~\omega$: γ -energy

$$\mathbf{T}=\mathbf{2.725}(\mathbf{1})\ \mathsf{K}$$
 $\int_0^\infty d\omega\, n_\gamma{}'(\omega) \simeq 411\ \mathrm{cm}^{-3}$

$$\langle \omega
angle = \mathbf{6} \cdot \mathbf{10}^{-4} \; \mathbf{eV} \; ,$$
 $\langle \lambda
angle \simeq 1.9 \; \mathsf{mm} \; \; (\mathsf{microwaves})$

GZK Cutoff

1966 K. Greisen (Cornell), G.T. Zatsepin und V.A. Kuz'min (Lebedev)

Prediction: Cosmic rays have "cutoff" at $E \approx 6 \cdot 10^{19} \text{ eV}$

Reason: Photopion production, in particular:

$$p + \gamma \rightarrow \Delta(1232 \text{ MeV}) \stackrel{\rightarrow}{\rightarrow} p + \pi^0$$

 $\rightarrow n + \pi^+, n \rightarrow p + e^- + \bar{\nu}_e$ $\left.\right\} 99.4\%$

[Further resonances:
$$\Delta(1620,\ 1700,\ \dots)$$
 , $p^*(1440,\ 1520\ \dots)$ etc. \to $p+\pi$ or $p+2\pi$]

Threshold for proton energy: $E_p = E_0$ (c = 1)

$$s = (E_0 + \omega)^2 - (\vec{p}_p + \vec{p}_{\gamma})^2 \qquad ("laboratory", FRW metrics)$$

$$= \underbrace{E_0^2 - \vec{p}_p^2}_{m_p^2} + 2E_0 \omega - 2\vec{p}_p \, \vec{p}_{\gamma} \simeq m_p^2 + \underbrace{4E_0 \omega}_{\text{head-on}} \stackrel{!}{=} m_{\Delta}^2 \qquad (\text{rest frame of } \Delta)$$

$$E_0 = \frac{m_{\Delta}^2 - m_p^2}{4\omega} \stackrel{\text{e.g. } \omega = 5\langle \omega \rangle}{=} \underbrace{6 \cdot 10^{19} \text{ eV}}$$

Further kinemat. transformations o Inelasticity $K:=rac{\Delta E_p}{E_p}=rac{1}{2}\left[1-rac{m_p^2-m_\pi^2}{s}
ight]$

Rest frame of the proton: $s=(m_p+\bar{\omega})^2-\vec{p}_{\gamma}^{\,2}=m_p^2+2m_p\,\bar{\omega}$

Doppler effect: $\bar{\omega} = \gamma \omega (1 - v_p \cos \theta)$ (θ : scattering angle in "laboratory") $\gamma = \frac{E_p}{m_p}$, e.g. $\frac{E_0}{m_p} \sim 10^{11} \Rightarrow \langle \bar{\omega} \rangle_{\theta} \simeq 180~{\rm MeV} \cdot \frac{E_p}{E_0}$

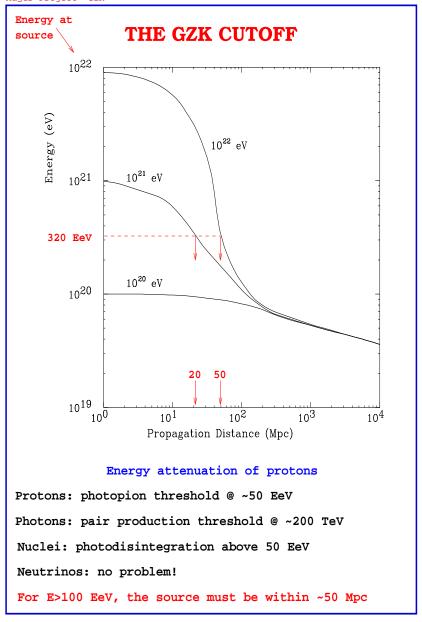
$$K(\langle \bar{\omega} \rangle) = \frac{1}{2} \left[1 - \frac{m_p^2 - m_\pi^2}{m_p(m_p + 2\langle \bar{\omega} \rangle)} \right] = \begin{cases} 0.15 & \langle \bar{\omega} \rangle = 180 \text{ MeV} \\ 0.20 & \langle \bar{\omega} \rangle = 300 \text{ MeV}, E_p = 2E_0 \end{cases}$$

au : decay time of energy $E_p > E_0$ during journey through the Universe

$$\frac{1}{\tau(E_p)} = -\frac{kT}{2\pi^2 \gamma^2} \int_{\bar{\omega}_0}^{\infty} d\bar{\omega} \, \sigma(\bar{\omega}) K(\bar{\omega}) \, \underline{\bar{\omega}} \ln \left[1 - e^{-\bar{\omega}/(2\gamma kT)} \right]$$
from Planck distribution

(F.W. Stecker, '68)

Cross-section σ is known from experiments: proton at rest in γ radiation $\sigma \approx 0.1 \text{ mb}$ (e.g. K.K. Wilson, '58)


 \Rightarrow Computation of au and corresp. path length $\ell \simeq au c \sim 10\dots 20~{
m Mpc}$

Minor corrections (additional photopion productions channels, discrete process . . .)

Heavy nuclei: photodisintegration \rightarrow attenuation length even shorter

Also for protons: very high starting energy \rightarrow energy loss more rapid

 \Rightarrow Range with E > GZK cutoff is maximally $\sim 50 \dots 100 \; \mathrm{Mpc}$

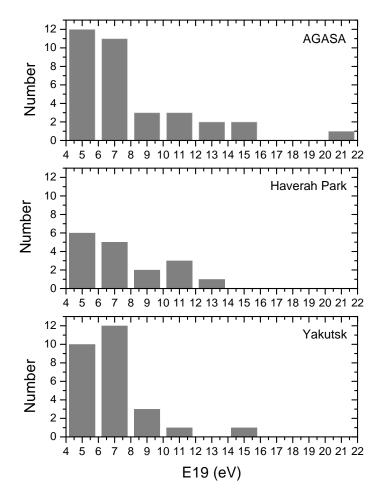
 $[R_{
m galactic\ plane} \sim 15\ {
m kpc}] \ll$ attenuation length $\ll [R_{
m visible\ Universe} \sim 14\ {
m Gpc}]$ Source should be near-by (e.g. Virgo galaxy cluster, 20 Mpc).

Homogeneously distributed sources \to pile-up at $E \lesssim E_0$ (5 · $10^{17}~{\rm eV} < E < E_0~:~p+\gamma \to p+e^++e^-$ but ΔE is small).

No sufficient acceleration mechanism is known, in particular not in our vicinity

→ Exceeding the GZK cutoff would be mysterious

Observations


- 1963 J. Linsley et al. (New Mexico) one event at $10^{20}~{\rm eV}$
- 1971 K. Suga et al. (Tokyo) new super-GZK event
- 1991 Fly's Eye (Utah) claims world record: $3 \cdot 10^{20} \, \mathrm{eV} = 48 \, \mathrm{J} = E_{\mathrm{kin}}^{\mathrm{tennis} \, \mathrm{ball}} (147 \, \mathrm{km/h})$

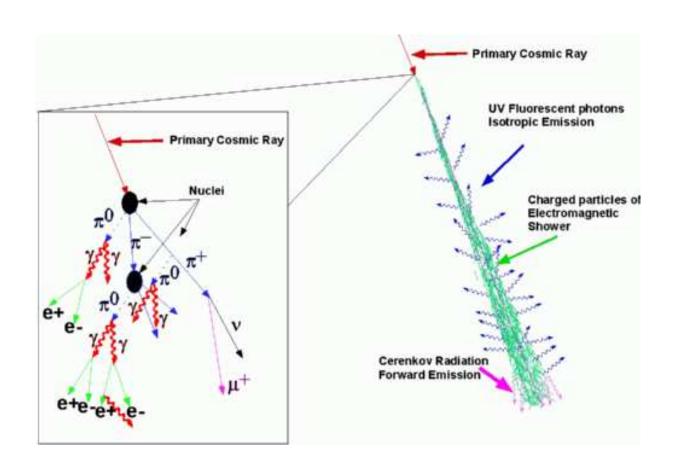
 21^{st} century : AGASA (Japan) numerous super-GZK events.

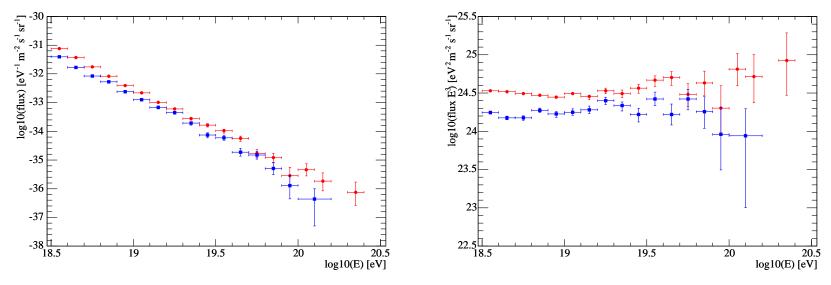
Spectrum agrees with Yakutsk (Russia) and Haverah Park (England),

but in contradiction to HiRes (Utah): seems to confirm cutoff.

De Marco/Blasi/Olinto (2003): Discrepancy might be explained statistically.

Super-GZK events at AGASA, Haverah Park and Yakutsk

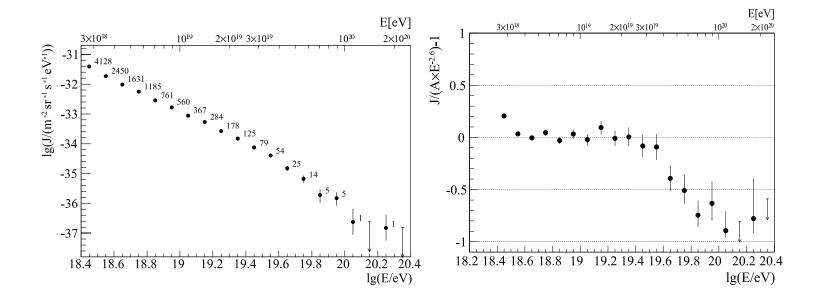

Flux:
$$E > 10^{12} \, \mathrm{eV}$$
: $\sim 10 \,$ primary particles / (m² min) $E > 10^{18.5} \, \mathrm{eV}$: $\sim 1 \,$ primary particle / (km² year)


Discrepancy between methods of detection?

- AGASA etc. detect air showers on surface of the earth secondary: $\pi, K \cdots \to \mu \ldots$ (μ survive $\sim 15 \text{ km}$ to the earth). O(1) particle per GeV , up to 10^{11} particles \to conclusions about energy of primary particle { shower is reconstructed with numerical methods, "max. likelihood" }
- HiRes: Fluorescence : bluish/UV light emitted from excited N_2 in nights without moon light and clouds visible by telescopes.

Heavy nuclei as primary particles \rightarrow higher shower onset \rightsquigarrow <u>type</u> of primary particle [Record at $3 \cdot 10^{20} \; \mathrm{eV}$ was presumably a heavy nucleus, e.g. oxygen]

Spallation: heavy nuclei break apart after a while (collision in gas clouds) plus photodisintegration \rightarrow high proton fraction hints at a **long path**.



Data from AGASA vs. HiRes

Pierre Auger Project (in Argentina, operating in part since 2003, completed in 2008) combines both, hopes to resolve this issue

- on ground: water Čerenkov array 1600 water tanks over 3000 km² (sizable statistics)
- Fluorescence: 24 telescopes verify correlation and energy calibration
- ightarrow E to pprox 22% systematic error

Data by the Pierre Auger Collaboration (presented in July 2007 in Mexico)

Spectrum decays $\propto E^{-2.69(2)}$ between $E_{\rm ankle} \simeq 10^{18.6}~{\rm eV}$ and $E_{\rm GZK} \simeq 10^{19.6}~{\rm eV}$

Clear reduction above $E_{
m GZK}$ but some new super-GZK events...

Nov. 2007: Analysis and interpretation of arrival directions \rightarrow Appendix

Not incompatible with overall flux $\propto E^{-3}$, space for speculations remains E.g. violation of Lorentz symmetry (crucial for σ and K!) . . .

II. Lorentz Symmetry

So far assumed to hold, even at γ -factor $\sim 10^{11}\,$ (LEP probed up to $\gamma \sim 10^5$) Central characteristic of relativity

- Special RT: holds **globally** [H.A. Lorentz (1904), H. Poincaré, A. Einstein (1905)]
- General RT : holds **locally** [A. Einstein (~ 1915)]

Field Φ (scalar, 4-vector, tensor, spinor) transforms in a representation D of the Lorentz group SO(1,3),

$$\Phi(x) \to D(\Lambda)\Phi(\Lambda^{-1}x)$$
, $\Lambda \in SO(1,3)$.

In particular scalars remain Lorentz invariant (LI).

```
<u>Theorem</u>: { LI and Locality } \Rightarrow CPT Invariance W. Pauli, G. Lüders, R. Jost (1957)
```

Simultaneous charge conjugation (C), space reflection (P) and time inversion (T).

```
O.W. Greenberg (2002): CPT violation \Rightarrow LI violation (LIV) (not \Leftarrow) [ CPT tests with K_0 vs. \bar{K}_0: \Delta mass (relative) < 8 \cdot 10^{-19} ]
```

Direct tests of Lorentz sym. through invariance of c:

- Michelson-Morley type : $|\Delta c/c| \lesssim 10^{-11}$
- Atomic physics : precision tests of *specific LIV parameters* e.g. spin coupling of p, n, e^- to a possible "tensor background field" : rel. deviation $< 10^{-27}$
- Outlook: atomic clocks on ISS etc.

```
Impressive, but: CPT conserving LIV \propto E^2 assume e.g. on Planck scale (M_{\rm Planck}=1/\sqrt{G}\approx 10^{28}~{\rm eV})~{\rm LIV}\sim O(1) accelerators E<10^{13}~{\rm eV}~\rightarrow~{\rm LIV}\sim O(10^{-30})
```

on the other hand:

Laboratory LIV $\sim O(10^{-25})$, CPT violation $\propto E ~\rightarrow~$ at $M_{\rm Planck}~:~{\rm LIV} \sim O(10^{-10})$

 \rightarrow CPT **even** terms are more interesting.

Cosmic rays: hope for measuring effects not far below $M_{\rm Planck}$; long path! Tests for theories like string, quantum gravity etc. are conceivable. They like to install new fields in the vacuum, which may yield LIV.

Systematic Approach: (A. Kostelecký et al., since 1998)

"Standard Model Extension", Lorentz sym. breaks spontaneously. Example:

$$\mathcal{L} = i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi - g\bar{\psi}\phi\psi - ig'G_{\mu\nu}\bar{\psi}\gamma^{\mu}\partial^{\nu}\psi + \dots$$

 ϕ : Higgs field, SM: $m=g\langle\phi_0
angle$

analogous: tensor field $\langle G_{00} \rangle > 0$, otherwise $\langle G_{\mu\nu} \rangle = 0$.

 \Rightarrow modified dispersion relation for each type of particle, depending on its coupling to $G_{\mu
u}$

Kostelecký: > 100 parameters of this kind

preserve "all usual properties of the SM" (e.g. E, \vec{p}) except for LI (and CPT).

Special RT : Goldstone boson \triangleq photon

General RT: various scenarios

Problem: why LIV at **high** energy? Tiny g': extreme hierarchy problem!

Pragmatic Approach (S. Coleman / S. Glashow '99)

 \mathcal{L}_{eff} with explicit LIV parameters of mass dim. ≤ 4 (renormalisable), CPT and gauge invariance persist, in addition SO(3) sym. in a "preferred frame"

• Boson field $\vec{\Phi}$:

$$\mathcal{L} = \dots + \frac{1}{2} \sum_{i=1}^{3} \partial_{i} \phi^{a} \varepsilon_{ab} \partial^{i} \phi^{b} \qquad (\varepsilon : \text{sym.})$$

• Dirac spinor:

$$\mathcal{L} = \cdots + i\bar{\psi}\vec{\gamma}\vec{\partial}\left[\varepsilon_{+}(1+\gamma_{5}) + \varepsilon_{-}(1-\gamma_{5})\right]\psi$$

- Pure gauge terms, e.g. for $U(1): E^i = F^{0i}$, $B^i = \frac{1}{2} \epsilon^{ijk} F_{jk}$ rot'sym., ren'able terms: $\vec{E}^2 \vec{B}^2$, $\vec{E} \cdot \vec{B}$, \vec{B}^2 , \vec{B}^2 , \vec{B}^2
 - \rightarrow use also in YM theories : $\sum_a \vec{B}^a \cdot \vec{B}^a$ (a : generators)

Leads to quasi-SM with 46 LIV parameters (many from fermion generation mixing) with gauge anomaly = 0 (gauge invariance on quantum level)

Example: real scalar field with renormalised propagator

$$-iD^{-1} = (p^2 - m_0^2)f(p^2) + \varepsilon \vec{p}^2 g(p^2)$$

[Minkowski space with c=1, $p^2=E^2-\vec p^2$, m_0 : renormalised at $\varepsilon\to 0$] f,g: smooth functions with normalisation $f(m_0^2)=g(m_0^2)=1$

LIV perturbation in $O(\varepsilon)$ shifts the poles to

$$\begin{split} E^2 &= \vec{p}^2 + m_0^2 - \varepsilon \vec{p}^2 \simeq \vec{p}^2 c_{\rm P}^2 + m^2 c_{\rm P}^4 \\ \text{with} & m = \frac{m_0}{1+\varepsilon} \quad , \quad c_{\rm P}^2 = 1-\varepsilon \end{split}$$

Each particle receives its own Maximal Attainable Velocity (MAV).

[Group velocity :
$$\frac{\partial E}{\partial |\vec{p}|} = \frac{|\vec{p}|}{\sqrt{|\vec{p}|^2 + m^2 c_{\mathrm{P}}^2}} \, c_{\mathrm{P}}$$
]

Correction becomes significant when $\ arepsilonec{p}^2/m_0^2 \sim O(1)$

 \Rightarrow tiny ε could be manifest at some tremendous energy! (Hierarchy problem is back)

Applications:

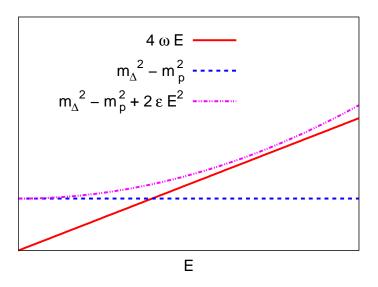
ullet Decay at ultra high energy : particle $_0 \to \sum_a$ particle $_a$ (m negligible) Decay condition:

$$|c_0|\vec{p}_0| = \sum_a c_a |\vec{p}_a| \ge c_{\min} \sum_a |\vec{p}_a| \ge c_{\min} |\vec{p}_0|$$
 $\Rightarrow c_0 \ge c_{\min} := \frac{\min}{a} c_a$

- Charged particle with $c_{\rm P}/c_{\gamma}=1+\varepsilon>1$: "Vacuum Čerenkov radiation" at $v>c_{\gamma}$, i.e. $E>m/\sqrt{1-c_{\gamma}^2/c_{\rm P}^2}\simeq m/\sqrt{2\varepsilon}$
- ▶ Protons survive $E \simeq 10^{20} \text{eV}$ \Rightarrow $\varepsilon_p < \frac{m_p^2}{2E^2} \approx 5 \cdot 10^{-23}$ better than bound from atomic physics (but only upper bound)
- ▶ Cosmic e[±] observed up to $E \simeq 1 \; {\rm TeV} \quad \Rightarrow \quad \varepsilon_e < 10^{-13}$

GZK Cutoff

Reconsider head-on collision $p+\gamma \to \Delta(1232)$ with $\mathbf{c}_{\gamma} = \mathbf{c}_{\Delta} = \mathbf{1}$, $\mathbf{c}_{\mathbf{p}} = \mathbf{1} - \varepsilon$


Constraint for a Δ resonance :

$$m_{\Delta}^{2} < (E + \omega)^{2} - (p_{i} - \omega)^{2} \simeq E^{2} - p_{i}^{2} + 2\omega(E + p_{i})$$

 $E,\,p_i\,$ for a proton in the "laboratory" :

$$E^2 - p_i^2 (1 - \varepsilon)^2 = m_p^2 (1 - \varepsilon)^4 \underbrace{\longrightarrow}_{E \gg m_p, |\varepsilon| \ll 1} \underbrace{E^2 - p_i^2} \simeq m_p^2 - 2 \varepsilon E^2$$

$$\Rightarrow m_{\Delta}^2 - m_p^2 + 2 \varepsilon E^2 < 4\omega E$$
 avoids photopion production

$$m_{\Delta}^2 - m_p^2 + 2 \, \varepsilon \, E^2 < 4 \omega E$$

- lackbox At arepsilon=0 : minimal energy $\ E_0=rac{m_\Delta^2-m_p^2}{4\omega}$
- \blacktriangleright With ε included, only soluble if

$$\varepsilon < \frac{\omega}{2E_0} \simeq \frac{2\omega^2}{m_{\Delta}^2 - m_p^2} |_{\omega = 6 \cdot 10^{-4} \text{ eV}} = 1.9 \cdot 10^{-25}$$

A tiny ε could remove the GZK cutoff!

[For slow protons the resonance $p+\gamma \to \Delta$ persists.]

This rules out the Δ channel for the photopion production.

```
Next candidate : p+\gamma \to p^*(1435) \to p+\pi at ultra high energy : decay only for c_\pi-c_p<5\cdot 10^{-24} we could close this channel too . . .
```

Farrar/Biermann (1998) : the 5 top events ($> 10^{20}~{\rm eV}$) all originate from the direction of a quasar. [Quasi-stellar radio source: extremely bright centre of a young galaxy]

Coleman/Glashow: primary particle of the super-GZK events could be neutrons:

- $c_n < c_p$: no β -decay at high energy
- $c_n < c_\Delta$: protected from the GZK cutoff
- hardly deflected by magnetic fields

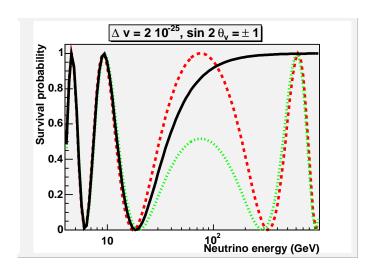
[Today (with O(100) super-GZK events) quasar hypothesis out of fashion, but clustering of directions revitalised, neutral primary particles (?)]

Maximal Attainable Velocities of the Neutrinos

Three bases for the neutrino states:

eigenstates of flavour, of mass m_0 or of MAV c_{ν} .

In principle neutrino oscillation is possible even at $m_{\nu}=0$, but not compatible with phen. data. (Lipari/Lusignoli '99)


We concentrate on the oscillation $\nu_{\mu} \leftrightarrow \nu_{\tau}$.

Assumption: dominant effect due to flavour-mixing of the mass states, plus ev. sub-dominant effect from

$$\Delta v = \text{MAV}(\nu_1) - \text{MAV}(\nu_2)$$

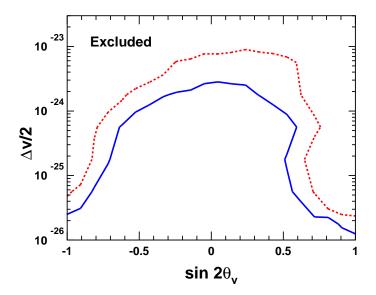
 $\theta_v = \text{mixing angle of } |\nu_{\mu}\rangle \text{ and } |\nu_{\tau}\rangle \text{ in MAV basis .}$

 Δv and $heta_v$ modify the life time of $\hspace{0.1cm}
u_{\mu}$.

Example of the MACRO Collaboration (Gran Sasso):

Survival probability of u_{μ} over 10 000 km at $\Delta v=2\cdot 10^{-25}$, $\sin 2\theta_v=0$, 1 , -1 .

Sensitivity at high energy of the ν_{μ} .


Consider a cosmic ν with $O(100)~{\rm GeV}$, for $m_{\nu} \lesssim 1~{\rm eV}$: $\gamma \gtrsim 10^{11}~{\rm (like~proton)}$.

Detection of upward directed $\,\mu\,$ from $\,\nu_{\mu} + N
ightarrow \mu + \dots$

multi-Coulomb scattering ightarrow reconstruction of E_{μ} and $E_{
u_{\mu}}$,

58 events with $E_{\nu\mu}>130~{
m GeV}$, compare to flux at low $E_{\nu\mu}$

Result (2004) :

Variation of Δv and θ_v does not improve the fit.

For arbitrary
$$\theta_v$$
: $|\Delta v| < 6 \cdot 10^{-24}$ (90 % C.L.)

[Agreement with Super-Kamiokande K2K data (Fogli et al. '99)]

III. Cosmic γ -rays

We now consider the photons themselves (so far in the background).

Highest energy $E_{\gamma} > 50~{\rm TeV}$ from Crab nebula (rest of a supernova, distance : 2 kpc).

Strongest sources beyond our galaxy :

Blazars, e.g. Markarian 501 (HEGRA, 1999), $E_{\gamma} \approx 20 \; {\rm TeV}$, distance 157 Mpc (from redshift).

Subset of "Active Galactic Nuclei", environment of a super-massive Black Hole, driven by swallowed matter \to emits $\gamma, e^{\pm}\dots$

A few hundreds are known, here distance and direction can often be determined.

New puzzle similar to GZK

We expect pair creation with IR background photons

$$\gamma_{\rm UV}(E) + \gamma_{\rm IR}(\omega) \rightarrow e^+ + e^- \dots [{\rm Compton\ scattering}]^{-1} \rightarrow {\rm cascade}$$

In centre-of-mass system: $\bar{\omega}=E/\gamma=\gamma\omega$ \to condition: $\bar{\omega}^2=E\omega>m_e^2$.

Example: for $E\sim 10~{\rm TeV}$ scattering at $\omega\gtrsim 3~{\rm meV}=5\langle\omega\rangle$

Despite the low density, this cross-section σ is sufficient, to practically exclude E_{γ} over such long distances.

Stecker/Glashow '01: Way out analogous to GZK

$$c_e = c_\gamma + \varepsilon$$

Condition for head-on collisions : $2E\omega - \emph{E}^2 \emph{\varepsilon} > 2m_e^2$

 $\varepsilon > 0$ could increase the energy threshold, or avoid pair creation completely \Rightarrow Universe becomes transparent for all photons.

No pair creation for $\varepsilon \geq \frac{2}{E^2}(E\omega-m_e^2)|_{E=20~{
m TeV},~\omega=0.003~{
m eV}}=2\cdot 10^{-15}$

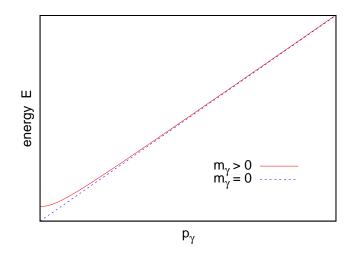
below bound for vacuum Čerenkov radiation of the electron, $~arepsilon < 10^{-13}$.

However: little known radio background could resolve puzzle

γ -Ray-Bursts (GRB)

Emitted in powerful energy eruptions for short periods (sec. to min.), temporarily brightest γ source in the sky.

Sources are small, merger of Neutron Stars or Black Holes or . . .


Known since 1973, homogeneous distribution, $E_{\gamma}=10^4\dots 10^8~{\rm eV}$

Discovery from satellites, redshift measured from ground. Direct identification from ground more efficient (La Silla, Chile).

2005: Observation from $4~\mathrm{Gpc}$, i.e. from Early Universe ($< 10^9~\mathrm{y}$).

Amelino-Camelia et al. : test for dispersion relation: $v_{\gamma}(E) = \text{const.}$?

Simplest attempt: $\mathbf{m}_{\gamma} > \mathbf{0}$, $v_{\gamma} = \frac{\partial E}{\partial p} \neq \text{const.}$

Almost same time of arrival after a long journey $\;
ightarrow\; m_{\gamma} < 2.4 \cdot 10^{-11} \; {\rm eV}$ (Schaefer, '99)

However:

much better bound from laboratory $\,m_{\gamma} < 6 \cdot 10^{-17} \; {\rm eV}\,$ (CERN Data Booklet)

We stay with $\, m_{\gamma} = 0 \,$.

Here Coleman/Glashow ansatz $E^2=p^2c_\gamma^2$ does not help.

"Doubly Special Relativity":

Class of theoretical approaches, which try to introduce a second absolute bound, in addition to c (Galilei: 0, Einstein: 1, are there more?)

Example: H.S. Snyder (1947): absolute minimal length (maybe Planck length $1/M_{\rm Planck} \simeq 10^{-35} \ {\rm m}$)

Idea: proceed as with angular momentum operator L_3 from a 5d perspective (c=1).

$$S = x_0^2 - x_1^2 - x_2^2 - x_3^2 - \mathbf{x_4^2}$$

 $S=a^2$: 4d de Sitter space inside the 5d light cone.

Generation of transformations, which leave S invariant:

$$L_{3} = \frac{\hbar}{i}(x_{1}\partial_{2} - x_{2}\partial_{1}) \quad \text{invariant} \quad x_{1}^{2} + x_{2}^{2}, x_{0}, x_{3}, x_{4}$$

$$X = \frac{a}{i}(x_{1}\partial_{4} - x_{4}\partial_{1}) \quad \dots \quad x_{1}^{2} + x_{4}^{2}, \dots \quad (4d \text{ LIV})$$

$$T = ai(x_{0}\partial_{4} + x_{4}\partial_{0}) \quad \dots \quad x_{0}^{2} - x_{4}^{2}, \dots \quad (4d \text{ LIV})$$

Spectrum of X is discrete

$$X\psi = \lambda\psi \;, \quad \begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = r \begin{pmatrix} \sin\varphi \\ \cos\varphi \end{pmatrix} \;, \quad X = \frac{a}{i}\partial_\varphi \;, \quad \psi \propto \exp(\frac{i}{a}\varphi\lambda)$$
$$\psi(\varphi) = \psi(\varphi + 2\pi) \qquad \Rightarrow \; \lambda = \frac{n}{a} \;, \quad n \in \mathbb{Z}$$

Position operators do not commute: $[X,Y] = \frac{ia}{\hbar}L_3$ etc.

ightarrow new uncertainty relation $\min(\Delta X \ \Delta Y) \propto a^2$

Minimal length a as an absolute constant, 4d non-locality, but 5d LI.

Interpretation as event horizon in a mini Black Hole matches a = Planck length (Doplicher/Fredenhagen/Roberts '95)

Currently popular version: commutators as constant "tensor field"

$$[X_{\mu}, X_{\nu}] = i\Theta_{\mu\nu}$$

observer independent, sets min. area (tensor under deformed Lorentz trafo).

Non-commutativity affects pure U(1) gauge field : picks up a YM-type self-coupling $\,\to\,$ deformed photon dispersion

1-loop result takes the form (Matusis/Susskind/Toumbas '00)

$$E^2 = \vec{p}^2 + \frac{C}{(p\Theta)^2}$$

[on quantum level the new UV term $\Theta_{\mu
u}$ causes also IR divergence (additional uncertainty !)]

► Amelino-Camelina et al. (2003) :

Analysis of GRB radiation $\Rightarrow \|\Theta\| > 10^{-40} \ \mathrm{cm^2}$, otherwise effect should be *larger*. However:

- $\Theta = 0$ is <u>not</u> excluded in this way.
- C < 0 i.e. 1-loop result is actually <u>IR unstable !</u> (Landsteiner/Lopez/Tytgat '01). (SUSY cancels IR divergence . . .)

NC QED revisited non-perturbatively (W.B./Nishimura/Susaki/Volkholz '06)

- ullet Commutative plane $(x_3,x_4) \rightarrow {\sf Lattice}$ includes Euclidean time (enables transition to Minkowski signature)
- ullet NC plane (\hat{x}_1,\hat{x}_2) , $[\hat{x}_1,\hat{x}_2]=i heta$ Lattice structure : $\exp\left(irac{2\pi}{a}\hat{x}_{\mu}
 ight)=\hat{1}$ $(\mu=1,2)$

Momenta commute, usual periodicity

$$e^{ik\mu\hat{x}\mu} = e^{i(k\mu + \frac{2\pi}{a})\hat{x}\mu}$$

$$\hat{1} = e^{i(k\mu + \frac{2\pi}{a})\hat{x}\mu} e^{-ik\nu\hat{x}\nu} = \dots = \hat{1} \exp\left(\frac{i\pi}{a}\theta(k_2 - k_1)\right)$$

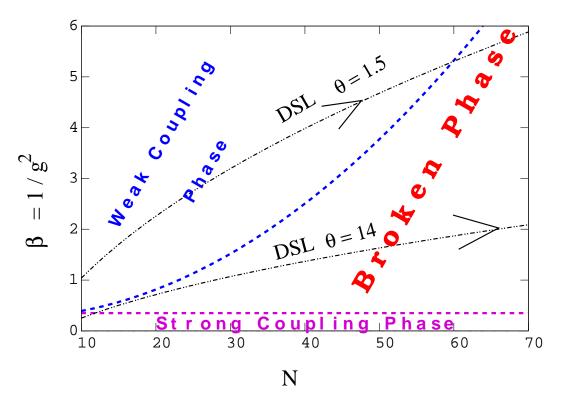
$$\Rightarrow \frac{\theta}{2a}k_\mu \in \mathbb{Z} : \text{momenta discrete, lattice periodic}$$

Periodic $N \times N$ lattice: $k_{\mu} = \frac{2\pi}{aN} n_{\mu} \quad (n_{\mu} \in \mathbb{Z}) \quad \Rightarrow \quad \underline{\theta = \frac{1}{\pi} \mathbf{N} \mathbf{a}^2}$

<u>Double Scaling Limit</u>: continuum $a \to 0$ infinite volume $Na \to \infty$ $Na^2 = \text{const.}$

Simultaneous UV and IR limit, which keeps $\theta = \mathrm{const.}$ (Szabo '01)

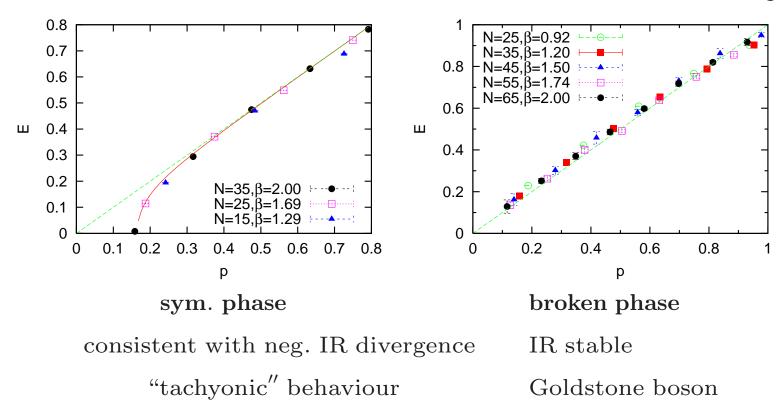
U(1) gauge theory on a NC lattice can be mapped onto a "twisted Eguchi-Kawai model" (U(N) matrices in one point) (Ambjørn et al. '01) \to numerically tractable


Yang-Mills type self-interaction and gauge transformations are **non-local** on scale $\sqrt{|\theta|}$.

In this range: gauge invariant open Wilson lines carry momentum \rightarrow order parameters for spont. breaking of transl. sym.

Numerical observation:

Double Scaling Limit $\beta \equiv \frac{1}{g^2} \propto \sqrt{N}$ stabilises a variety of observables $(a=1/\beta)$


Phase diagram : weak \leftrightarrow moderate \leftrightarrow strong coupling

Double Scaling Limit $\, eta \propto \sqrt{N} \,$ always leads to the phase of broken symmetry.

That phase could describe a stable cont. limit for the NC photon.

Dispersion relation: determined from exp. decay in comm. plane $E(p=p_3)|_{p_1=p_2=0}$

Photon may survive in an NC world,

but explicit prediction for the deformed dispersion relation is outstanding.

• Return to a pragmatic ansatz: J. Ellis et al. (2006/7)

$$c^{2}|\vec{p}|^{2} = E^{2}\left(1 + \frac{E}{M}\right)$$

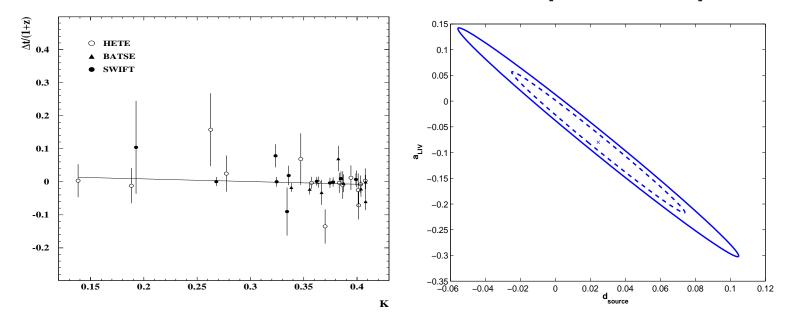
 $\rightarrow v_{\gamma}(E) = \frac{\partial E}{\partial |\vec{p}|} \simeq c\left(1 - \frac{E}{M}\right)$

M: very heavy mass, emerges somehow from "quantum gravity foam", noticeable at high energy, or after a long path.

Analysis of 35 GRB's

Data from 3 satellites [e.g. HETE: $dt=64~\mathrm{ms}$, 4 energy channels].

High energy γ 's arrive later. Ansatz for the observed delay without LIV


$$\Delta t_{\rm obs} = d_{\rm source}(1+z)$$

 $d_{
m source}$: possible delay already in the emission

z: redshift

With LIV:
$$\frac{\Delta t_{\rm obs}}{1+z} = d_{\rm source} + \underbrace{\frac{\Delta E}{M} \frac{1}{H_0}}_{a_{\rm LIV}} K(z)$$
 (K : complicated correction)

Enhance error bars until fits match: 1 σ evidence for LIV [68 %, 95 %]

Cautious conclusion : $|\mathbf{M}| > 1.4 \cdot 10^{25} \ \mathrm{eV} \approx 0.001 \ M_{\mathrm{Planck}}$ (with 95 % C.L.)

Studies of single GRBs or blazar flares (e.g. Mkn501, Mkn 421) even conclude $|M| > 0.01 M_{\rm Planck}$

Conclusions:

Cosmic rays: unique opportunity for phenomenological access to tremendous energies.

In the centre-of-mass frame, relevant processes are harmless low energy events → Question of LI is crucial!

GZK and γ -TeV Puzzle :

Why is the Universe surprisingly transparent for

• protons with $E_p \gtrsim 10^{20} \; \mathrm{eV}$ • photons with $E_\gamma \gtrsim 10 \; \mathrm{TeV}$?

Open question; LIV provides a class of proposals for a solution, IF some puzzle persists

LIV not detected anywhere — we discussed failed attempts with cosmic neutrinos and GRBs. But established LI precision does not exclude proposed solutions.

New projects include: Japanese Experiment Module – Extreme Universe Space Observatory (JEM-EUSO), Orbiting Wide-angle Light-collectors (OWL): search for fluorescence light from satellites. Pierre Auger: new plant in northern hemisphere . . .

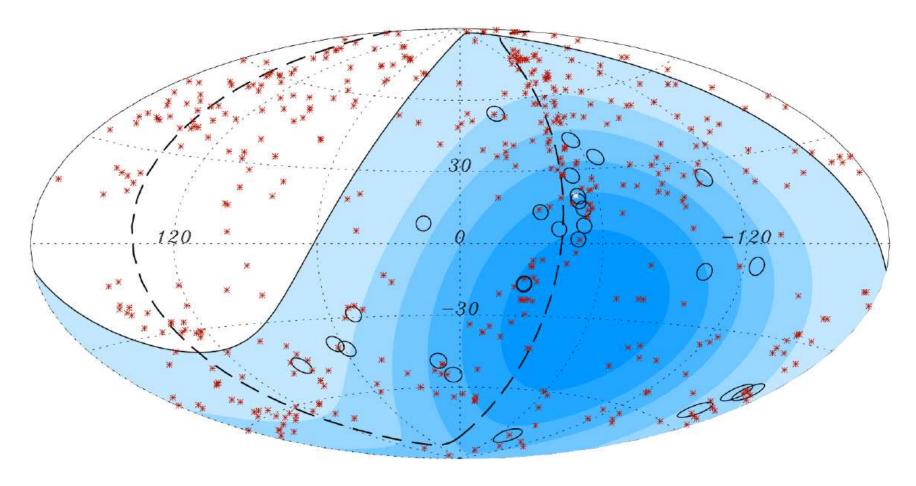
News in Nov. 2007: AGN Hypothesis

[Active Galactic Nuclei: in centre a super-massive black hole ($> 10^6$ solar masses), nucleus attracts and absorbs large quantities of matter, but emits high-E particles (mechanism?)]

Pierre Auger Collab. analyses UHECRs detected from Jan. 2004 - May 2006

Hypothesis: directions are clustered and correlated with locations of nearby AGN

3 parameters: ψ : angular range around UHECR direction


 $E_{
m min}$: threshold for UHECR

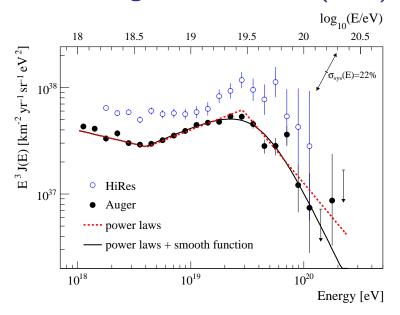
 $R_{
m max}$: max. distance to "nearby" AGN (from redshift)

```
tuning \rightarrow (\psi, E_{\rm min}, R_{\rm max}) = (3.1^{\circ}, 5.6 \cdot 10^{19} \ {\rm eV}, 75 \ {\rm Mpc}) yields max. correlation, captures 12 our of 15 UHECR (for isotropic sources: 3.2 expected [at fixed parameters . . . ])
```

 $R_{\rm max}$ short, \approx straight UHECR propagation conceivable

Check with data from May 2006 - Aug. 2007: captures 8 out of 13 UHECRs (2.8 expected)

Celestial sphere with circles of radius 3.1° at arrival directions of 27 UHECRs detected by the Pierre Auger Observatory. Asterisks: 472 AGN with R < 75 Mpc.


Dashed: supergalactic plane; white: Centaurus A

For clustering PA Collab. claims 99 % C.L., correlation less clear

Critics:

- Variation of $(\psi, E_{\min}, R_{\max})$ is discussed only vaguely.
- Statistics still small, world data before essentially isotropic [AGASA (1996): slight signal for clustering, contradicted by HiRes] Consistent with world data?
- Gorbunov/Tinyakov/Tkachev/Troisky: Flux $\propto 1/R^2 \rightarrow \text{nearest}$ AGN should be dominant sources in particular Cen A and Virgo should contribute each ≈ 6 events out of 27 Cen A in business, but Virgo delivers none \Rightarrow AGN Hypothesis <u>disfavoured</u> at 99 % C.L. [However: argument could be evaded if AGN are *episodic* UHECR sources]
- D. Fargion: short R_{max} favours heavy nuclei as primaries
- Hypothesis supported by new Irkutsk data analysis, but not by HiRes.

Updated spectrum: Pierre Auger Collaboration (2010)

flux (
$$E \lesssim E_{\rm ankle} \simeq 10^{18.6}~{\rm eV}) \propto E^{-3.3}$$
 (stat. errors with Feldman/Cousins method)

flux
$$(E_{\rm ankle} < E < E_{\rm GZK} \simeq 10^{19.6} \; {\rm eV}) \propto E^{-2.6}$$

Just beyond : clearly suppressed, but in good agreement with $E^{-3.3}$ extrapolation

GZK cutoff is substantiated (?)

Clustering and AGN Hypotheses

period	exposure	events	AGN	isotropically
	$[km^2 sr yr]$	above E_{\min}	direction	expected
until May 2006	4390	14	9	2.9
June 2006 - Aug. 2007	4500	13	9	2.7
Sept. 2007 - March 2009	8150	31	8	6.5

1. period: exploratory, used to fix paramters (\rightarrow biased)

 $E_{\rm min}$ shifted down to $5.5 \cdot 10^{19}~{\rm eV}$ (calibration corrected)

Critics addressed: Virgo passivity persisits, but only 1.2 events expected "masked data" excluding vicinity of galactic plane (12°) : no drastic change

New data with exposure almost doubled: "neither strenghten nor contradict" hypotheses of clustering and ANG correlation. Overall still supported (in particular clustering), but evidence became clearly weaker.

Probability for accidental isotropic effect: p = 0.0004 (2006/7), p = 0.33 (2007/9).