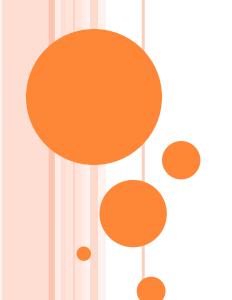
Seminario FCFM, UNACH

Variedades de Prym Clásicas

Tuxtla Gutiérrez, Chiapas; agosto 9 de 2018



¿Qué entiendo por variedad?

Comentarios

¿Qué entiendo por variedad?

Variedad topológica

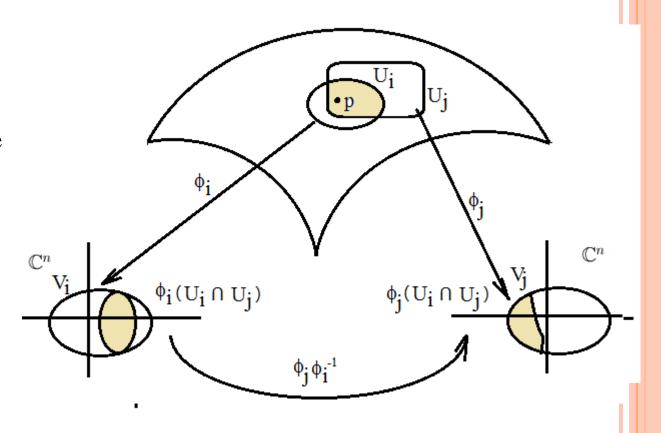
Variedad diferenciable

Variedad compleja

Variedad algebraica

Variedad proyectiva

¿Variedad abeliana?



Variedad abeliana

- Variedades algebraicas proyectivas que a su vez tienen estructura de grupo algebraico, es decir, su ley de grupo puede definirse por funciones polinomiales.
- Toro Complejo que admite un haz lineal definido positivo.
- Toro Complejo que admite una polarización $H=c_1(L)$.
- Variedades complejas de la forma $X=V/\Lambda$

Variedades Complejas de la forma $X = V/\Lambda$

V es un espacio vectorial complejo de dimensión g

 Λ es una latiz en V, es decir, un subgrupo discreto de rango 2g en V y por lo tanto isomorfo a \mathbb{Z}^{2g} .

X es de dimensión g y es abeliano

Sea E = Im(H), hay una base $\lambda_1, ... \lambda_g, \mu_1, ..., \mu_g$ de Λ , respecto a la cual, E esta dada por la matriz

Una polarizació $\begin{pmatrix} 0 & \Delta \\ -\Delta & 0 \end{pmatrix}$ una forma hermitiana $H: V \times V \to \mathbb{C}$ positiva definida tal que

$$\Delta = diag(d_1, ...d_g), d_i \geq 0 \text{ y } d_i \mid d_{i+1}$$

El vector $\mathbf{t} = (d_1, ..., d_g)$ se denomina el tipo de la polarización.

Variedades de Prym Tyurin

Teorema de Torelli

$$(X, \Theta_X), \mathcal{A}_g$$

$$C \longrightarrow (J(C), \Theta)$$

Una variedad abeliana principalmente polarizada (X,Θ_X) es llamada variedad de Prym-Ti $_X^*\Theta\equiv e\Theta_X$ urva suave proyectiva C con Jacobiana $(J(C),\Theta)$, tal que X es una subvariedad abeliana de J(C) con $i_X^*\Theta\equiv e\Theta$ $i_X:X\hookrightarrow J(C)$ and $i_X:X\hookrightarrow J(C)$ es la inclusion call $i_X:X\hookrightarrow J(C)$ llama exponente de la variedad X.

Criterio de Welters

Toda vapp de dimensión g es una variedad de Prym-Tyurin de exponente

$$e = 3^{(g-1)}(g-1)!$$

Variedad abeliana A de dimensión g	2	3
A es Prym-Tyurin de exponente (Welters)	3	18
A es Prym-Tyurin de exponente $\dim \mathcal{M}_g = \dim \mathcal{A}_g - \dots$	1	1

Considere el conjunto

$$\mathcal{R}_g = \{ \tilde{X} \xrightarrow{\pi} X \mid \pi \text{ es étale de grado } 2 \}$$

Hay una aplicación natural

$$\mathcal{R}_{g+1} \longrightarrow \mathcal{A}_g$$

$$f \longrightarrow P(f)$$

Variedad abeliana A de dimensión g	4	5
A es Prym-Tyurin de exponente (Welters)	162	1944
A es Prym-Tyurin de exponente $ \frac{dim \mathcal{R}}{\mathcal{R}_5} = \frac{dim \mathcal{M}}{\mathcal{A}_4} \text{ y } \mathcal{R}_6 \rightarrow $	\mathcal{A}_{5}	2

¿Cuál es el exponente mínimo con el que una variedad abeliana polarizada es una variedad de Prym-Tyurin?

El cociente $\widehat{X} := \widehat{V}/\widehat{\Lambda}$ es un toro complejo de dimensión g denominado toro dual de X morfismo, $Pic^0(C)$ adquiere estructura de Variedad principalmente polarizada. En lo sucesivo, identificamos $JC = Pic^0(C)$ vía el isomorfismo

 $\widehat{V} = Hom_{\overline{\mathbb{C}}}(V,\mathbb{C})$ el \mathbb{C} -espacio vectorial de formas \mathbb{C} -antilineales $l: V \to \mathbb{C}$ $H^0(C,\omega_C)$ el \mathbb{C} -espacio vectorial de dimensión g de 1-formas holomorfas sobre C

$$\widehat{\Lambda} := \{ l \in \widehat{V} | \langle l, \Lambda \rangle \subseteq \mathbb{Z} \}$$

$$\langle , \rangle : \widehat{V} \times V \to \mathbb{R}, \ \langle l, v \rangle = Im \ l(v)$$

 $H_1(C,\mathbb{Z})$ es un grupo abeliano libre de rango 2g

$$\widehat{X} \xrightarrow{\sim} Pic^0(X)$$

Variedades de Prym Clásicas

Dada una variedad abeliana principalmente polarizada $(X = V/\Lambda, \Theta)$, una subvariedad abeliana $Y \subset X$ $(Y = W/\Lambda \cap W, \text{ donde } W \subset V \text{ es un } \mathbb{C}$ -subespacio vectorial de V) e $i: Y \hookrightarrow X$ la inclusión canónica, se tiene el siguiente diagrama:

El exponente e(i) finito $K(i^*\Theta) = ker\phi_{i^*\Theta}$ (el entero $\widehat{Y} \leftarrow \widehat{X}$ finito $K(i^*\Theta) = ker\phi_{i^*\Theta}$ (el entero $\widehat{Y} \leftarrow \widehat{X}$), se llama exponente de la polarización $i^*\Theta$ en Y. Existe una única isogenia $\psi_{i^*\Theta}:\widehat{Y} \to Y$ tal que $\phi_{i^*\Theta} \circ \psi_{i^*\Theta} = e(i^*\Theta)_{\widehat{Y}}$ y $\psi_{i^*\Theta} \circ \phi_{i^*\Theta} = e(i^*\Theta)_Y$ donde $e(i^*\Theta)_{\widehat{Y}}$ y $e(i^*\Theta)_Y$ son las multiplicaciones por $e(i^*\Theta)$ en \widehat{Y} y Y respectivamente.

Se define el exponente de la subvariedad abeliana Y como el exponente $e(i^*\Theta)$ de la polarización inducida en Y y escribimos $e(Y) = e(i^*\Theta)$

Dado el endomorfismo norma N_Y construimos el $Z := X^{1-\varepsilon_Y}$ se llama la subvariedad abeliana complementaria de Y en X con respecto a la polarización Θ de X.

de $End_{\mathbb{Q}}(X)$ el cual satisface $\varepsilon_Y = \varepsilon_Y'$ y $\varepsilon_Y^2 = \varepsilon_Y'$; en otra palabras, dada la polarización Θ en X, asociamos a una subvariedad abeliana Y de X un idempotente simétrico $\varepsilon_Y \in End_{\mathbb{Q}}(X)$. Inversamente, si ε es un idempotente simétrico en $End_{\mathbb{Q}}(X)$, existe $n \in \mathbb{Z}^+$ tal que $n\varepsilon \in End(X)$ por lo que se define X^{ε} como la imagen de $n\varepsilon$.

$$f^*:J(Y)\to J(X)$$

$$P \qquad f^*J(Y)$$

Sabemos que un morfismo $f: X \to Y$ de cur-Hay exactamente tres tipos de morfismos para los cuales P(f) es de Prym-Tyurin:

- 1. f es étale de grado dos.
- 2. f es de grado dos y dos puntos de ramificación.
- 3. f es de grado tres, con dos puntos de ramificación, X es de género dos y Y es una curva elíptica.

